Appendix 3

Filters with gaussian magnitude approximation

In pulse communication systems there is a demand for filters whose impulse responses have the following properties:

• No ringing and overshoot;
• Symmetry about the time for which the response is a maximum.

A filter that satisfies the above conditions is called a Gaussian filter. The three most common filter types with widely available design tables and curves which approach the ideal Gaussian filter are:

1. The gaussian magnitude filter;
2. The maximally flat group delay filter;
3. The equiriple group-delay filters.

Although, the delay performance of a gaussian filter is worse than the Bessel approximation, a gaussian filter has a better step response. By definition, a gaussian function has the form:

(A.3.1)

where T is the mean value and s the standard deviation. If the impulse response of a filter is of this form, then the filter will be said to be gaussian. This impulse response has no overshoot. If we denote w02=2/s2 , then the ideal gaussian magnitude shape derived from the Fourier transform of g(t) can be written as:

(A.3.2)

The frequency w0 is a normalizing frequency and it can be related to the -3dB point as:

(A.3.3)

The magnitude of the gaussian transfer and the group-delay response are shown below.

 Fig.A.3.1: Ideal gaussian transfer and the group delay

When w=w0, the value of the magnitude is e=2.71828 and the relative attenuation is 1Np or 8.68dB. It can be shown that a gaussian magnitude shape is unrealizable but approximations of this transfer can be obtained by using the following series expansion:

(A.3.4)

An nth-order approximation consists of the first 2n powers in the series. The attenuation of the gaussian function approximated up to n=6 is shown in fig. A.3.2.

 Fig.A.3.2: Attenuation performance of gaussian approximations

The approximation of the Gaussian function with a finite number of network elements can be made better by increasing the number of network elements. However, it is possible to approximate the gaussian function up to a certain level. Gaussian-to-6dB and gaussian-to-12 dB approximations will approximate the transfer up to -6dB point and -12dB point respectively. To show the difference between those approximations, the frequency transfer of a 5th order gaussian, gaussian-to-6dB and gaussian-to-12dB transfer is depicted in fig. A.3.3. With these gaussian approximations it is possible to achieve a higher stopband attenuation with the same number of network elements at the expenses of a small decrease of performance in the time domain response and group delay.

 Fig.A.3.3: Gaussian, gaussian-to-6dB and gaussian-to-12dB transfer

The corresponding group-delay and step response of the approximations shown above are illustrated in fig.A.3.4. This explains the degradation of the group delay and correspondingly, the degradation of the step response when approximating the gaussian transfer.

 Fig.A.3.4: Group delay and step response of gaussian-to-6(12) dB

Featured Video
Editorial
 EDACafe Editorialby Roberto FrazzoliEDA updates; new generation Nvidia GPU; research on AI energy savings; future Tesla batteries
More Editorial
Latest Blog Posts
 Agnisys Automation Reviewby Anupam BakshiAutomation of the UVM Register Abstraction Layer
 IC Insightsby IC InsightsChina to Fall Far Short of its “Made-in-China 2025” Goal for IC Devices
 Bridging the Frontierby Bob Smith, Executive DirectorVirtual 2020 CEO Outlook Set for June 17
 Embedded Softwareby Colin WallsMultiple constructors in C++
Jobs
Senior Analog Design Engineers #5337 for EDA Careers at EAST COAST, California
Senior Layout Engineer for EDA Careers at EAST COAST, California
Software Engineer for EDA Careers at RTP, North Carolina
Senior Application Engineer Formal Verification for EDA Careers at San Jose and Austin, California
Upcoming Events
Sensors Expo & Conference at McEnery Convention Center 150 W. San Carlos Street SAN JOSE CA - Jun 22 - 24, 2020
Nanotech 2020 Conference and Expo at National Harbor MD - Jun 29 - 1, 2020
IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2020 at Limassol Hotel, Amathus Area, Pareklisia Cyprus - Jul 6 - 8, 2020
57th Design Automation Conference 2020 at San Francisco CA - Jul 19 - 23, 2020