Toshiba Memory Corporation Develops World's First QLC 3D Flash Memory

Achieves World’s Largest Capacity of 1.5TB in a Single Package with BiCS FLASHchip

TOKYO — (BUSINESS WIRE) — June 27, 2017Toshiba Memory Corporation, the world leader in memory solutions, today announced development of the world’s first[1] BiCS FLASH™ three-dimensional (3D) flash memory[2] with a stacked cell structure. The newest BiCS FLASH™ device is the first to deliver 4-bit-per-cell (quadruple-level cell, QLC) technology, advancing capacity beyond that of triple-level cell (TLC) devices and pushing the boundaries of flash memory technology.

This Smart News Release features multimedia. View the full release here: http://www.businesswire.com/news/home/20170627006601/en/

QLC 3D Flash Memory (Photo: Business Wire)

QLC 3D Flash Memory (Photo: Business Wire)

Multi-bit cell flash memories store data by managing the number of electrons in each individual memory cell. Achieving QLC technology posed a series of technical challenges, as increasing the number of bit-per-cell by one within same electron count requires twice the accuracy of TLC technology. Toshiba Memory has drawn on its advanced circuit design capabilities and industry-leading 64-layer 3D flash memory process technology to create the QLC 3D flash memory.

The prototype features the world’s largest die capacity[3] (768 gigabits/96 gigabytes) with 64-layer 3D flash memory process. Shipment of prototypes to SSD and SSD controller vendors for evaluation and development purposes started in early June.

The QLC 3D flash memory also enables a 1.5-terabyte (TB) device with a 16-die stacked architecture in a single package - the industry’s largest capacity[4]. Samples of this groundbreaking device will be showcased at the 2017 Flash Memory Summit in Santa Clara, California, United States, from August 7-10.

Toshiba Memory already mass produces 64-layer 256-gigabit (32-gigabytes) devices, and as it expands mass production it will continue to demonstrate industry leadership by advancing technology development. Focused on meeting growing demand for high density, smaller chip size flash memory solutions, the new QLC device targets such applications as enterprise SSD, consumer SSD and memory cards.

Note:
1. Source: Toshiba Memory Corporation, as of June 28, 2017.
2. A structure stacking Flash memory cells vertically on a silicon substrate to realize significant density improvements over planar NAND Flash memory, where cells are formed on the silicon substrate.
3. Source: Toshiba Memory Corporation, as of June 28, 2017.
4. Source: Toshiba Memory Corporation, as of June 28, 2017.

• Company names, product names, and service names mentioned herein may be trademarks of their respective companies.



Contact:

Toshiba Memory Corporation
Kota Yamaji, +81-3-3457-3473
Business Planning Division
Email Contact




Review Article Be the first to review this article
 Advanced Asembly

Featured Video
Editorial
More Editorial  
Latest Blog Posts
Colin WallsEmbedded Software
by Colin Walls
Variable declarations in C – plenty of pitfalls
Anupam BakshiAgnisys Automation Review
by Anupam Bakshi
AUGER: Celebrating Our Users
2021 EDACafe PredictionsEDACafe Editorial
by 2021 EDACafe Predictions
Atmosic Technologies Electronics Design Industry Predictions
Jobs
Staff SerDes Applications Design Engineer for Xilinx at San Jose, California
Business Operations Planner for Global Foundaries at Santa Clara, California
Principle Engineer (Analog-Mixed-Signal Implementation) for Global Foundaries at Santa Clara, California
Technical Product Manager- SISW-EDA 238452 for Siemens AG at Fremont, California
ASIC Engineer for Amazon at seattle, Washington
Circuit Design & Layout Simulation Engineer - Co-Op (Spring 2021) for Global Foundaries at Santa Clara, California
Upcoming Events
IPC APEX EXPO 2021 Goes Virtual at - Mar 8 - 12, 2021
ADAS Sensors 2021 at The Henry Hotel 300 Town Center Drive Dearborn MI - Apr 7 - 8, 2021
ISQED'21 - 22nd International Symposium at POB 607 Los Altos CA - Apr 7 - 9, 2021
SEMI MEMS & Sensors Industry Group (MSIG), MSTC 2021 at United States - Apr 13 - 15, 2021
Verific: SystemVerilog & VHDL Parsers



© 2021 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise